Winter Sale - Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dpt65

Data-Engineer-Associate Questions and Answers

Question # 6

A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.

The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.

Which solution will meet these requirements?

A.

Use multiple COPY commands to load the data into the Redshift cluster.

B.

Use S3DistCp to load multiple files into Hadoop Distributed File System (HDFS). Use an HDFS connector to ingest the data into the Redshift cluster.

C.

Use a number of INSERT statements equal to the number of Redshift cluster nodes. Load the data in parallel into each node.

D.

Use a single COPY command to load the data into the Redshift cluster.

Full Access
Question # 7

A company has a frontend ReactJS website that uses Amazon API Gateway to invoke REST APIs. The APIs perform the functionality of the website. A data engineer needs to write a Python script that can be occasionally invoked through API Gateway. The code must return results to API Gateway.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Deploy a custom Python script on an Amazon Elastic Container Service (Amazon ECS) cluster.

B.

Create an AWS Lambda Python function with provisioned concurrency.

C.

Deploy a custom Python script that can integrate with API Gateway on Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Create an AWS Lambda function. Ensure that the function is warm by scheduling an Amazon EventBridge rule to invoke the Lambda function every 5 minutes by using mock events.

Full Access
Question # 8

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Full Access
Question # 9

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Full Access
Question # 10

A data engineer must use AWS services to ingest a dataset into an Amazon S3 data lake. The data engineer profiles the dataset and discovers that the dataset contains personally identifiable information (PII). The data engineer must implement a solution to profile the dataset and obfuscate the PII.

Which solution will meet this requirement with the LEAST operational effort?

A.

Use an Amazon Kinesis Data Firehose delivery stream to process the dataset. Create an AWS Lambda transform function to identify the PII. Use an AWS SDK to obfuscate the PII. Set the S3 data lake as the target for the delivery stream.

B.

Use the Detect PII transform in AWS Glue Studio to identify the PII. Obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.

C.

Use the Detect PII transform in AWS Glue Studio to identify the PII. Create a rule in AWS Glue Data Quality to obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.

D.

Ingest the dataset into Amazon DynamoDB. Create an AWS Lambda function to identify and obfuscate the PII in the DynamoDB table and to transform the data. Use the same Lambda function to ingest the data into the S3 data lake.

Full Access
Question # 11

A company needs to build a data lake in AWS. The company must provide row-level data access and column-level data access to specific teams. The teams will access the data by using Amazon Athena, Amazon Redshift Spectrum, and Apache Hive from Amazon EMR.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon S3 for data lake storage. Use S3 access policies to restrict data access by rows and columns. Provide data access through Amazon S3.

B.

Use Amazon S3 for data lake storage. Use Apache Ranger through Amazon EMR to restrict data access by rows and columns. Provide data access by using Apache Pig.

C.

Use Amazon Redshift for data lake storage. Use Redshift security policies to restrict data access by rows and columns. Provide data access by using Apache Spark and Amazon Athena federated queries.

D.

Use Amazon S3 for data lake storage. Use AWS Lake Formation to restrict data access by rows and columns. Provide data access through AWS Lake Formation.

Full Access
Question # 12

A company uses an Amazon Redshift provisioned cluster as its database. The Redshift cluster has five reserved ra3.4xlarge nodes and uses key distribution.

A data engineer notices that one of the nodes frequently has a CPU load over 90%. SQL Queries that run on the node are queued. The other four nodes usually have a CPU load under 15% during daily operations.

The data engineer wants to maintain the current number of compute nodes. The data engineer also wants to balance the load more evenly across all five compute nodes.

Which solution will meet these requirements?

A.

Change the sort key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

B.

Change the distribution key to the table column that has the largest dimension.

C.

Upgrade the reserved node from ra3.4xlarqe to ra3.16xlarqe.

D.

Change the primary key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

Full Access
Question # 13

A data engineer is optimizing query performance in Amazon Athena notebooks that use Apache Spark to analyze large datasets that are stored in Amazon S3. The data is partitioned. An AWS Glue crawler updates the partitions.

The data engineer wants to minimize the amount of data that is scanned to improve efficiency of Athena queries.

Which solution will meet these requirements?

A.

Apply partition filters in the queries.

B.

Increase the frequency of AWS Glue crawler invocations to update the data catalog more often.

C.

Organize the data that is in Amazon S3 by using a nested directory structure.

D.

Configure Spark to use in-memory caching for frequently accessed data.

Full Access
Question # 14

A company stores customer data in an Amazon S3 bucket. Multiple teams in the company want to use the customer data for downstream analysis. The company needs to ensure that the teams do not have access to personally identifiable information (PII) about the customers.

Which solution will meet this requirement with LEAST operational overhead?

A.

Use Amazon Macie to create and run a sensitive data discovery job to detect and remove PII.

B.

Use S3 Object Lambda to access the data, and use Amazon Comprehend to detect and remove PII.

C.

Use Amazon Kinesis Data Firehose and Amazon Comprehend to detect and remove PII.

D.

Use an AWS Glue DataBrew job to store the PII data in a second S3 bucket. Perform analysis on the data that remains in the original S3 bucket.

Full Access
Question # 15

A company needs to store semi-structured transactional data in a serverless database.

The application writes data infrequently but reads it frequently, with millisecond retrieval required.

A.

Store the data in an Amazon S3 Standard bucket. Enable S3 Transfer Acceleration.

B.

Store the data in an Amazon S3 Apache Iceberg table. Enable S3 Transfer Acceleration.

C.

Store the data in an Amazon RDS for MySQL cluster. Configure RDS Optimized Reads.

D.

Store the data in an Amazon DynamoDB table. Configure a DynamoDB Accelerator (DAX) cache.

Full Access
Question # 16

A company has five offices in different AWS Regions. Each office has its own human resources (HR) department that uses a unique IAM role. The company stores employee records in a data lake that is based on Amazon S3 storage.

A data engineering team needs to limit access to the records. Each HR department should be able to access records for only employees who are within the HR department's Region.

Which combination of steps should the data engineering team take to meet this requirement with the LEAST operational overhead? (Choose two.)

A.

Use data filters for each Region to register the S3 paths as data locations.

B.

Register the S3 path as an AWS Lake Formation location.

C.

Modify the IAM roles of the HR departments to add a data filter for each department's Region.

D.

Enable fine-grained access control in AWS Lake Formation. Add a data filter for each Region.

E.

Create a separate S3 bucket for each Region. Configure an IAM policy to allow S3 access. Restrict access based on Region.

Full Access
Question # 17

A company processes 500 GB of audience and advertising data daily, storing CSV files in Amazon S3 with schemas registered in AWS Glue Data Catalog. They need to convert these files to Apache Parquet format and store them in an S3 bucket.

The solution requires a long-running workflow with 15 GiB memory capacity to process the data concurrently, followed by a correlation process that begins only after the first two processes complete.

A.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the workflow by using AWS Glue. Configure AWS Glue to begin the third process after the first two processes have finished.

B.

Use Amazon EMR to run each process in the workflow. Create an Amazon Simple Queue Service (Amazon SQS) queue to handle messages that indicate the completion of the first two processes. Configure an AWS Lambda function to process the SQS queue by running the third process.

C.

Use AWS Glue workflows to run the first two processes in parallel. Ensure that the third process starts after the first two processes have finished.

D.

Use AWS Step Functions to orchestrate a workflow that uses multiple AWS Lambda functions. Ensure that the third process starts after the first two processes have finished.

Full Access
Question # 18

A company receives a data file from a partner each day in an Amazon S3 bucket. The company uses a daily AW5 Glue extract, transform, and load (ETL) pipeline to clean and transform each data file. The output of the ETL pipeline is written to a CSV file named Dairy.csv in a second 53 bucket.

Occasionally, the daily data file is empty or is missing values for required fields. When the file is missing data, the company can use the previous day's CSV file.

A data engineer needs to ensure that the previous day's data file is overwritten only if the new daily file is complete and valid.

Which solution will meet these requirements with the LEAST effort?

A.

Invoke an AWS Lambda function to check the file for missing data and to fill in missing values in required fields.

B.

Configure the AWS Glue ETL pipeline to use AWS Glue Data Quality rules. Develop rules in Data Quality Definition Language (DQDL) to check for missing values in required files and empty files.

C.

Use AWS Glue Studio to change the code in the ETL pipeline to fill in any missing values in the required fields with the most common values for each field.

D.

Run a SQL query in Amazon Athena to read the CSV file and drop missing rows. Copy the corrected CSV file to the second S3 bucket.

Full Access
Question # 19

A data engineer is processing a large amount of log data from web servers. The data is stored in an Amazon S3 bucket. The data engineer uses AWS services to process the data every day. The data engineer needs to extract specific fields from the raw log data and load the data into a data warehouse for analysis.

A.

Use Amazon EMR to run Apache Hive queries on the raw log files in the S3 bucket to extract the specified fields. Store the output as ORC files in the original S3 bucket.

B.

Use AWS Step Functions to orchestrate a series of AWS Batch jobs to parse the raw log files. Load the specified fields into an Amazon RDS for PostgreSQL database.

C.

Use an AWS Glue crawler to parse the raw log data in the S3 bucket and to generate a schema. Use AWS Glue ETL jobs to extract and transform the data and to load it into Amazon Redshift.

D.

Use AWS Glue DataBrew to run AWS Glue ETL jobs on a schedule to extract the specified fields from the raw log files in the S3 bucket. Load the data into partitioned tables in Amazon Redshift.

Full Access
Question # 20

A company is using an AWS Transfer Family server to migrate data from an on-premises environment to AWS. Company policy mandates the use of TLS 1.2 or above to encrypt the data in transit.

Which solution will meet these requirements?

A.

Generate new SSH keys for the Transfer Family server. Make the old keys and the new keys available for use.

B.

Update the security group rules for the on-premises network to allow only connections that use TLS 1.2 or above.

C.

Update the security policy of the Transfer Family server to specify a minimum protocol version of TLS 1.2.

D.

Install an SSL certificate on the Transfer Family server to encrypt data transfers by using TLS 1.2.

Full Access
Question # 21

A data engineer is building a new data pipeline that stores metadata in an Amazon DynamoDB table. The data engineer must ensure that all items that are older than a specified age are removed from the DynamoDB table daily.

Which solution will meet this requirement with the LEAST configuration effort?

A.

Enable DynamoDB TTL on the DynamoDB table. Adjust the application source code to set the TTL attribute appropriately.

B.

Create an Amazon EventBridge rule that uses a daily cron expression to trigger an AWS Lambda function to delete items that are older than the specified age.

C.

Add a lifecycle configuration to the DynamoDB table that deletes items that are older than the specified age.

D.

Create a DynamoDB stream that has an AWS Lambda function that reacts to data modifications. Configure the Lambda function to delete items that are older than the specified age.

Full Access
Question # 22

A financial services company stores financial data in Amazon Redshift. A data engineer wants to run real-time queries on the financial data to support a web-based trading application. The data engineer wants to run the queries from within the trading application.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Establish WebSocket connections to Amazon Redshift.

B.

Use the Amazon Redshift Data API.

C.

Set up Java Database Connectivity (JDBC) connections to Amazon Redshift.

D.

Store frequently accessed data in Amazon S3. Use Amazon S3 Select to run the queries.

Full Access
Question # 23

A company wants to migrate an application and an on-premises Apache Kafka server to AWS. The application processes incremental updates that an on-premises Oracle database sends to the Kafka server. The company wants to use the replatform migration strategy instead of the refactor strategy.

Which solution will meet these requirements with the LEAST management overhead?

A.

Amazon Kinesis Data Streams

B.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) provisioned cluster

C.

Amazon Data Firehose

D.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) Serverless

Full Access
Question # 24

A company uses Amazon Athena to run SQL queries for extract, transform, and load (ETL) tasks by using Create Table As Select (CTAS). The company must use Apache Spark instead of SQL to generate analytics.

Which solution will give the company the ability to use Spark to access Athena?

A.

Athena query settings

B.

Athena workgroup

C.

Athena data source

D.

Athena query editor

Full Access
Question # 25

A company's data engineer needs to optimize the performance of table SQL queries. The company stores data in an Amazon Redshift cluster. The data engineer cannot increase the size of the cluster because of budget constraints.

The company stores the data in multiple tables and loads the data by using the EVEN distribution style. Some tables are hundreds of gigabytes in size. Other tables are less than 10 MB in size.

Which solution will meet these requirements?

A.

Keep using the EVEN distribution style for all tables. Specify primary and foreign keys for all tables.

B.

Use the ALL distribution style for large tables. Specify primary and foreign keys for all tables.

C.

Use the ALL distribution style for rarely updated small tables. Specify primary and foreign keys for all tables.

D.

Specify a combination of distribution, sort, and partition keys for all tables.

Full Access
Question # 26

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

Full Access
Question # 27

A company is building a data stream processing application. The application runs in an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The application stores processed data in an Amazon DynamoDB table.

The company needs the application containers in the EKS cluster to have secure access to the DynamoDB table. The company does not want to embed AWS credentials in the containers.

Which solution will meet these requirements?

A.

Store the AWS credentials in an Amazon S3 bucket. Grant the EKS containers access to the S3 bucket to retrieve the credentials.

B.

Attach an IAM role to the EKS worker nodes. Grant the IAM role access to DynamoDB. Use the IAM role to set up IAM roles service accounts (IRSA) functionality.

C.

Create an IAM user that has an access key to access the DynamoDB table. Use environment variables in the EKS containers to store the IAM user access key data.

D.

Create an IAM user that has an access key to access the DynamoDB table. Use Kubernetes secrets that are mounted in a volume of the EKS cluster nodes to store the user access key data.

Full Access
Question # 28

A data engineer maintains custom Python scripts that perform a data formatting process that many AWS Lambda functions use. When the data engineer needs to modify the Python scripts, the data engineer must manually update all the Lambda functions.

The data engineer requires a less manual way to update the Lambda functions.

Which solution will meet this requirement?

A.

Store a pointer to the custom Python scripts in the execution context object in a shared Amazon S3 bucket.

B.

Package the custom Python scripts into Lambda layers. Apply the Lambda layers to the Lambda functions.

C.

Store a pointer to the custom Python scripts in environment variables in a shared Amazon S3 bucket.

D.

Assign the same alias to each Lambda function. Call reach Lambda function by specifying the function's alias.

Full Access
Question # 29

A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.

The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.

A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.

Which solution will meet these requirements with the LEAST operational effort?

A.

Use native Amazon Redshift, Teradata, and BigQuery connectors to build the pipeline in AWS Glue. Use native AWS Glue transforms to join the data. Run a Merge operation on the data lake Iceberg table.

B.

Use the Amazon Athena federated query connectors for Amazon Redshift, Teradata, and BigQuery to build the pipeline in Athena. Write a SQL query to read from all the data sources, join the data, and run a Merge operation on the data lake Iceberg table.

C.

Use the native Amazon Redshift connector, the Java Database Connectivity (JDBC) connector for Teradata, and the open source Apache Spark BigQuery connector to build the pipeline in Amazon EMR. Write code in PySpark to join the data. Run a Merge operation on the data lake Iceberg table.

D.

Use the native Amazon Redshift, Teradata, and BigQuery connectors in Amazon Appflow to write data to Amazon S3 and AWS Glue Data Catalog. Use Amazon Athena to join the data. Run a Merge operation on the data lake Iceberg table.

Full Access
Question # 30

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

Full Access
Question # 31

A data engineer is building an automated extract, transform, and load (ETL) ingestion pipeline by using AWS Glue. The pipeline ingests compressed files that are in an Amazon S3 bucket. The ingestion pipeline must support incremental data processing.

Which AWS Glue feature should the data engineer use to meet this requirement?

A.

Workflows

B.

Triggers

C.

Job bookmarks

D.

Classifiers

Full Access
Question # 32

A company uses Amazon RDS to store transactional data. The company runs an RDS DB instance in a private subnet. A developer wrote an AWS Lambda function with default settings to insert, update, or delete data in the DB instance.

The developer needs to give the Lambda function the ability to connect to the DB instance privately without using the public internet.

Which combination of steps will meet this requirement with the LEAST operational overhead? (Choose two.)

A.

Turn on the public access setting for the DB instance.

B.

Update the security group of the DB instance to allow only Lambda function invocations on the database port.

C.

Configure the Lambda function to run in the same subnet that the DB instance uses.

D.

Attach the same security group to the Lambda function and the DB instance. Include a self-referencing rule that allows access through the database port.

E.

Update the network ACL of the private subnet to include a self-referencing rule that allows access through the database port.

Full Access
Question # 33

A data engineer notices slow query performance on a highly partitioned table that is in Amazon Athena. The table contains daily data for the previous 5 years, partitioned by date. The data engineer wants to improve query performance and to automate partition management. Which solution will meet these requirements?

A.

Use an AWS Lambda function that runs daily. Configure the function to manually create new partitions in AW5 Glue for each day's data.

B.

Use partition projection in Athena. Configure the table properties by using a date range from 5 years ago to the present.

C.

Reduce the number of partitions by changing the partitioning schema from dairy to monthly granularity.

D.

Increase the processing capacity of Athena queries by allocating more compute resources.

Full Access
Question # 34

A company stores sensitive transaction data in an Amazon S3 bucket. A data engineer must implement controls to prevent accidental deletions.

A.

Enable versioning on the S3 bucket and configure MFA delete.

B.

Configure an S3 bucket policy rule that denies the creation of S3 delete markers.

C.

Create an S3 Lifecycle rule that moves deleted files to S3 Glacier Deep Archive.

D.

Set up AWS Config remediation actions to prevent users from deleting S3 objects.

Full Access
Question # 35

A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.

Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.

Which combination of troubleshooting steps should the data engineer take? (Select TWO.)

A.

Confirm that Athena is pointing to the correct Amazon S3 location.

B.

Increase the query timeout duration.

C.

Use the MSCK REPAIR TABLE command.

D.

Restart Athena.

E.

Delete and recreate the problematic Athena table.

Full Access
Question # 36

A data engineer is using an AWS Glue ETL job to remove outdated customer records from a table that contains customer account information. The data engineer is using the following SQL command:

MERGE INTO accounts t USING monthly_accounts_update s

ON t.customer = s.customer

WHEN MATCHED THEN DELETE

What will happen when the data engineer runs the SQL command?

A.

All customer records that exist in both the customer accounts table and the monthly_accounts_update table will be deleted from the accounts table.

B.

Only customer records that are present in both tables will be retained in the customer accounts table.

C.

The monthly_accounts_update table will be deleted.

D.

No records will be deleted because the command syntax is not valid in AWS Glue.

Full Access
Question # 37

A company is migrating on-premises workloads to AWS. The company wants to reduce overall operational overhead. The company also wants to explore serverless options.

The company's current workloads use Apache Pig, Apache Oozie, Apache Spark, Apache Hbase, and Apache Flink. The on-premises workloads process petabytes of data in seconds. The company must maintain similar or better performance after the migration to AWS.

Which extract, transform, and load (ETL) service will meet these requirements?

A.

AWS Glue

B.

Amazon EMR

C.

AWS Lambda

D.

Amazon Redshift

Full Access
Question # 38

A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.

The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Step Functions to pause the Redshift cluster when the analytics processes are complete and to resume the cluster to run new processes every month.

B.

Use Amazon Redshift Serverless to automatically process the analytics workload.

C.

Use the AWS CLI to automatically process the analytics workload.

D.

Use AWS CloudFormation templates to automatically process the analytics workload.

Full Access
Question # 39

A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.

Which solution will run the Glue jobs in the MOST cost-effective way?

A.

Choose the FLEX execution class in the Glue job properties.

B.

Use the Spot Instance type in Glue job properties.

C.

Choose the STANDARD execution class in the Glue job properties.

D.

Choose the latest version in the GlueVersion field in the Glue job properties.

Full Access
Question # 40

A company is setting up a data pipeline in AWS. The pipeline extracts client data from Amazon S3 buckets, performs quality checks, and transforms the data. The pipeline stores the processed data in a relational database. The company will use the processed data for future queries.

Which solution will meet these requirements MOST cost-effectively?

A.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue Data Quality to enforce suggested quality rules. Load the data and the quality check results into an Amazon RDS for MySQL instance.

B.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data into an Amazon RDS for MySQL instance. Load the quality check results into a new S3 bucket.

C.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue DataBrew to perform quality checks. Load the processed data and the quality check results into a new S3 bucket.

D.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data and quality check results into an Amazon RDS for MySQL instance.

Full Access
Question # 41

A gaming company uses Amazon Kinesis Data Streams to collect clickstream data. The company uses Amazon Kinesis Data Firehose delivery streams to store the data in JSON format in Amazon S3. Data scientists at the company use Amazon Athena to query the most recent data to obtain business insights.

The company wants to reduce Athena costs but does not want to recreate the data pipeline.

Which solution will meet these requirements with the LEAST management effort?

A.

Change the Firehose output format to Apache Parquet. Provide a custom S3 object YYYYMMDD prefix expression and specify a large buffer size. For the existing data, create an AWS Glue extract, transform, and load (ETL) job. Configure the ETL job to combine small JSON files, convert the JSON files to large Parquet files, and add the YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena tab

B.

Create an Apache Spark job that combines JSON files and converts the JSON files to Apache Parquet files. Launch an Amazon EMR ephemeral cluster every day to run the Spark job to create new Parquet files in a different S3 location. Use the ALTER TABLE SET LOCATION statement to reflect the new S3 location on the existing Athena table.

C.

Create a Kinesis data stream as a delivery destination for Firehose. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to run Apache Flink on the Kinesis data stream. Use Flink to aggregate the data and save the data to Amazon S3 in Apache Parquet format with a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.

D.

Integrate an AWS Lambda function with Firehose to convert source records to Apache Parquet and write them to Amazon S3. In parallel, run an AWS Glue extract, transform, and load (ETL) job to combine the JSON files and convert the JSON files to large Parquet files. Create a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.

Full Access
Question # 42

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Full Access
Question # 43

A data engineer needs to create an empty copy of an existing table in Amazon Athena to perform data processing tasks. The existing table in Athena contains 1,000 rows.

Which query will meet this requirement?

A.

CREATE TABLE new_table LIKE old_table;

B.

CREATE TABLE new_table AS SELECT * FROM old_table WITH NO DATA;

C.

CREATE TABLE new_table AS SELECT * FROM old_table;

D.

CREATE TABLE new_table AS SELECT * FROM old_table WHERE 1=1;

Full Access
Question # 44

A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.

The company must ensure that the application performs consistently during peak usage times.

Which solution will meet these requirements in the MOST cost-effective way?

A.

Increase the provisioned capacity to the maximum capacity that is currently present during peak load times.

B.

Divide the table into two tables. Provision each table with half of the provisioned capacity of the original table. Spread queries evenly across both tables.

C.

Use AWS Application Auto Scaling to schedule higher provisioned capacity for peak usage times. Schedule lower capacity during off-peak times.

D.

Change the capacity mode from provisioned to on-demand. Configure the table to scale up and scale down based on the load on the table.

Full Access
Question # 45

A data engineer is launching an Amazon EMR duster. The data that the data engineer needs to load into the new cluster is currently in an Amazon S3 bucket. The data engineer needs to ensure that data is encrypted both at rest and in transit.

The data that is in the S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The data engineer has an Amazon S3 path that has a Privacy Enhanced Mail (PEM) file.

Which solution will meet these requirements?

A.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Create a second security configuration. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach both security configurations to the cluster.

B.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for local disk encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

C.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

D.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach the security configuration to the cluster.

Full Access
Question # 46

A sales company uses AWS Glue ETL to collect, process, and ingest data into an Amazon S3 bucket. The AWS Glue pipeline creates a new file in the S3 bucket every hour. File sizes vary from 200 KB to 300 KB. The company wants to build a sales prediction model by using data from the previous 5 years. The historic data includes 44,000 files.

The company builds a second AWS Glue ETL pipeline by using the smallest worker type. The second pipeline retrieves the historic files from the S3 bucket and processes the files for downstream analysis. The company notices significant performance issues with the second ETL pipeline.

The company needs to improve the performance of the second pipeline.

Which solution will meet this requirement MOST cost-effectively?

A.

Use a larger worker type.

B.

Increase the number of workers in the AWS Glue ETL jobs.

C.

Use the AWS Glue DynamicFrame grouping option.

D.

Enable AWS Glue auto scaling.

Full Access
Question # 47

A marketing company uses Amazon S3 to store marketing data. The company uses versioning in some buckets. The company runs several jobs to read and load data into the buckets.

To help cost-optimize its storage, the company wants to gather information about incomplete multipart uploads and outdated versions that are present in the S3 buckets.

Which solution will meet these requirements with the LEAST operational effort?

A.

Use AWS CLI to gather the information.

B.

Use Amazon S3 Inventory configurations reports to gather the information.

C.

Use the Amazon S3 Storage Lens dashboard to gather the information.

D.

Use AWS usage reports for Amazon S3 to gather the information.

Full Access
Question # 48

A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.

Which solution will meet these requirements?

A.

Use AWS Step Functions to periodically export data from the Amazon DynamoDB tables to an Amazon S3 bucket. Use an AWS Lambda function to load the data into Amazon OpenSearch Service.

B.

Configure an AW5 Glue job to have a source of Amazon DynamoDB and a destination of Amazon OpenSearch Service to transfer data in near real time.

C.

Use Amazon DynamoDB Streams to capture table changes. Use an AWS Lambda function to process and update the data in Amazon OpenSearch Service.

D.

Use a custom OpenSearch plugin to sync data from the Amazon DynamoDB tables.

Full Access
Question # 49

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

Full Access
Question # 50

A company uses Amazon Redshift as a data warehouse solution. One of the datasets that the company stores in Amazon Redshift contains data for a vendor.

Recently, the vendor asked the company to transfer the vendor's data into the vendor's Amazon S3 bucket once each week.

Which solution will meet this requirement?

A.

Create an AWS Lambda function to connect to the Redshift data warehouse. Configure the Lambda function to use the Redshift COPY command to copy the required data to the vendor's S3 bucket on a schedule.

B.

Create an AWS Glue job to connect to the Redshift data warehouse. Configure the AWS Glue job to use the Redshift UNLOAD command to load the required data to the vendor's S3 bucket on a schedule.

C.

Use the Amazon Redshift data sharing feature. Set the vendor's S3 bucket as the destination. Configure the source to be as a custom SQL query that selects the required data.

D.

Configure Amazon Redshift Spectrum to use the vendor's S3 bucket as destination. Enable data querying in both directions.

Full Access
Question # 51

A company is planning to use a provisioned Amazon EMR cluster that runs Apache Spark jobs to perform big data analysis. The company requires high reliability. A big data team must follow best practices for running cost-optimized and long-running workloads on Amazon EMR. The team must find a solution that will maintain the company's current level of performance.

Which combination of resources will meet these requirements MOST cost-effectively? (Choose two.)

A.

Use Hadoop Distributed File System (HDFS) as a persistent data store.

B.

Use Amazon S3 as a persistent data store.

C.

Use x86-based instances for core nodes and task nodes.

D.

Use Graviton instances for core nodes and task nodes.

E.

Use Spot Instances for all primary nodes.

Full Access
Question # 52

A company maintains a data warehouse in an on-premises Oracle database. The company wants to build a data lake on AWS. The company wants to load data warehouse tables into Amazon S3 and synchronize the tables with incremental data that arrives from the data warehouse every day.

Each table has a column that contains monotonically increasing values. The size of each table is less than 50 GB. The data warehouse tables are refreshed every night between 1 AM and 2 AM. A business intelligence team queries the tables between 10 AM and 8 PM every day.

Which solution will meet these requirements in the MOST operationally efficient way?

A.

Use an AWS Database Migration Service (AWS DMS) full load plus CDC job to load tables that contain monotonically increasing data columns from the on-premises data warehouse to Amazon S3. Use custom logic in AWS Glue to append the daily incremental data to a full-load copy that is in Amazon S3.

B.

Use an AWS Glue Java Database Connectivity (JDBC) connection. Configure a job bookmark for a column that contains monotonically increasing values. Write custom logic to append the daily incremental data to a full-load copy that is in Amazon S3.

C.

Use an AWS Database Migration Service (AWS DMS) full load migration to load the data warehouse tables into Amazon S3 every day Overwrite the previous day's full-load copy every day.

D.

Use AWS Glue to load a full copy of the data warehouse tables into Amazon S3 every day. Overwrite the previous day's full-load copy every day.

Full Access
Question # 53

A company is planning to upgrade its Amazon Elastic Block Store (Amazon EBS) General Purpose SSD storage from gp2 to gp3. The company wants to prevent any interruptions in its Amazon EC2 instances that will cause data loss during the migration to the upgraded storage.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create snapshots of the gp2 volumes. Create new gp3 volumes from the snapshots. Attach the new gp3 volumes to the EC2 instances.

B.

Create new gp3 volumes. Gradually transfer the data to the new gp3 volumes. When the transfer is complete, mount the new gp3 volumes to the EC2 instances to replace the gp2 volumes.

C.

Change the volume type of the existing gp2 volumes to gp3. Enter new values for volume size, IOPS, and throughput.

D.

Use AWS DataSync to create new gp3 volumes. Transfer the data from the original gp2 volumes to the new gp3 volumes.

Full Access
Question # 54

A company receives a daily file that contains customer data in .xls format. The company stores the file in Amazon S3. The daily file is approximately 2 GB in size.

A data engineer concatenates the column in the file that contains customer first names and the column that contains customer last names. The data engineer needs to determine the number of distinct customers in the file.

Which solution will meet this requirement with the LEAST operational effort?

A.

Create and run an Apache Spark job in an AWS Glue notebook. Configure the job to read the S3 file and calculate the number of distinct customers.

B.

Create an AWS Glue crawler to create an AWS Glue Data Catalog of the S3 file. Run SQL queries from Amazon Athena to calculate the number of distinct customers.

C.

Create and run an Apache Spark job in Amazon EMR Serverless to calculate the number of distinct customers.

D.

Use AWS Glue DataBrew to create a recipe that uses the COUNT_DISTINCT aggregate function to calculate the number of distinct customers.

Full Access
Question # 55

A company uses Amazon Redshift as its data warehouse service. A data engineer needs to design a physical data model.

The data engineer encounters a de-normalized table that is growing in size. The table does not have a suitable column to use as the distribution key.

Which distribution style should the data engineer use to meet these requirements with the LEAST maintenance overhead?

A.

ALL distribution

B.

EVEN distribution

C.

AUTO distribution

D.

KEY distribution

Full Access
Question # 56

A data engineer needs to onboard a new data producer into AWS. The data producer needs to migrate data products to AWS.

The data producer maintains many data pipelines that support a business application. Each pipeline must have service accounts and their corresponding credentials. The data engineer must establish a secure connection from the data producer's on-premises data center to AWS. The data engineer must not use the public internet to transfer data from an on-premises data center to AWS.

Which solution will meet these requirements?

A.

Instruct the new data producer to create Amazon Machine Images (AMIs) on Amazon Elastic Container Service (Amazon ECS) to store the code base of the application. Create security groups in a public subnet that allow connections only to the on-premises data center.

B.

Create an AWS Direct Connect connection to the on-premises data center. Store the service account credentials in AWS Secrets manager.

C.

Create a security group in a public subnet. Configure the security group to allow only connections from the CIDR blocks that correspond to the data producer. Create Amazon S3 buckets than contain presigned URLS that have one-day expiration dates.

D.

Create an AWS Direct Connect connection to the on-premises data center. Store the application keys in AWS Secrets Manager. Create Amazon S3 buckets that contain resigned URLS that have one-day expiration dates.

Full Access
Question # 57

A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.

A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.

The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.

Which solution will meet these requirements in the MOST cost-effective way?

A.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

B.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

C.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

D.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

Full Access
Question # 58

A data engineer is using an Apache Iceberg framework to build a data lake that contains 100 TB of data. The data engineer wants to run AWS Glue Apache Spark Jobs that use the Iceberg framework.

What combination of steps will meet these requirements? (Select TWO.)

A.

Create a key named -conf for an AWS Glue job. Set Iceberg as a value for the --datalake-formats job parameter.

B.

Specify the path to a specific version of Iceberg by using the --extra-Jars job parameter. Set Iceberg as a value for the ~ datalake-formats job parameter.

C.

Set Iceberg as a value for the -datalake-formats job parameter.

D.

Set the -enable-auto-scaling parameter to true.

E.

Add the -job-bookmark-option: job-bookmark-enable parameter to an AWS Glue job.

Full Access
Question # 59

A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventory management system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.

Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.

Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)

A.

The producer experienced network-related timeouts.

B.

The stream's value for the IteratorAgeMilliseconds metric was too high.

C.

There was a change in the number of shards, record processors, or both.

D.

The AggregationEnabled configuration property was set to true.

E.

The max_records configuration property was set to a number that was too high.

Full Access
Question # 60

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.

Full Access
Question # 61

A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.

Which data pipeline solutions will meet these requirements? (Choose two.)

A.

Use an Amazon EventBridge rule to run an AWS Glue job every 15 minutes. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

B.

Use an Amazon EventBridge rule to invoke an AWS Glue workflow job every 15 minutes. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

C.

Configure an AWS Lambda function to invoke an AWS Glue crawler when a file is loaded into the S3 bucket. Configure an AWS Glue job to process and load the data into the Amazon Redshift tables. Create a second Lambda function to run the AWS Glue job. Create an Amazon EventBridge rule to invoke the second Lambda function when the AWS Glue crawler finishes running successfully.

D.

Configure an AWS Lambda function to invoke an AWS Glue workflow when a file is loaded into the S3 bucket. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

E.

Configure an AWS Lambda function to invoke an AWS Glue job when a file is loaded into the S3 bucket. Configure the AWS Glue job to read the files from the S3 bucket into an Apache Spark DataFrame. Configure the AWS Glue job to also put smaller partitions of the DataFrame into an Amazon Kinesis Data Firehose delivery stream. Configure the delivery stream to load data into the Amazon Redshift tables.

Full Access
Question # 62

A company plans to use Amazon Kinesis Data Firehose to store data in Amazon S3. The source data consists of 2 MB csv files. The company must convert the .csv files to JSON format. The company must store the files in Apache Parquet format.

Which solution will meet these requirements with the LEAST development effort?

A.

Use Kinesis Data Firehose to convert the csv files to JSON. Use an AWS Lambda function to store the files in Parquet format.

B.

Use Kinesis Data Firehose to convert the csv files to JSON and to store the files in Parquet format.

C.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON and stores the files in Parquet format.

D.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON. Use Kinesis Data Firehose to store the files in Parquet format.

Full Access
Question # 63

A company wants to migrate data from an Amazon RDS for PostgreSQL DB instance in the eu-east-1 Region of an AWS account named Account_A. The company will migrate the data to an Amazon Redshift cluster in the eu-west-1 Region of an AWS account named Account_B.

Which solution will give AWS Database Migration Service (AWS DMS) the ability to replicate data between two data stores?

A.

Set up an AWS DMS replication instance in Account_B in eu-west-1.

B.

Set up an AWS DMS replication instance in Account_B in eu-east-1.

C.

Set up an AWS DMS replication instance in a new AWS account in eu-west-1

D.

Set up an AWS DMS replication instance in Account_A in eu-east-1.

Full Access
Question # 64

A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.

The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.

Which AWS service should the company use to meet these requirements?

A.

AWS Lambda

B.

AWS Database Migration Service (AWS DMS)

C.

AWS Direct Connect

D.

AWS DataSync

Full Access
Question # 65

Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.

The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.

Which command should the developer for Branch B run before the developer raises a pull request to the master branch?

A.

git diff branchB mastergit commit -m

B.

git pull master

C.

git rebase master

D.

git fetch -b master

Full Access